I’ve been on the Keto zone diet for over 2 months and finally feel energy and a sense of fullness. I have logged purposely the meals you suggested in your book however when I test to see how I’m fairing in fat burning with the ketones sticks I come up in the middle. I tried to adjust here and there to see if my percentages are aligning to the 70-15-15 as you suggest but it still comes up in the middle. In other words I’m average in the fat burning process. Is this just stubbornness on my body’s part?I’m slowly loosing weight but slowly. I exercise but that hasn’t changed anything. Thanks for your help!
In addition, no statement on this website has been evaluated by the Food and Drug Administration, and any product mentioned or described on this website is not intended to diagnose, treat, cure, or prevent any disease. If you purchase anything through a link on this website, you should assume that we have an affiliate relationship with the company providing the product or service that you purchase, and that we will be paid in some way. We recommend that you do your own independent research before purchasing anything.
A close relative of maltose is a molecule known as isomaltose (typically found in items such as beer and honey). The biggest difference between maltose and isomaltose is that isomaltose is joined together by an α-1,6 chemical bond, rather than an α-1,4 chemical bond. Scientists suspected that by adding a certain enzyme (transglucosidase) to high maltose syrup, they could change the bonds from α-1,4 to α-1,6, thereby making it more resistant to being broken down by the enzymes, as described above, when compared to maltose. Again, while this sounds excellent in theory, it is not necessarily what happens in our bodies. In fact, isomaltose (and thus, IMO syrups used in some of these products) is broken down by certain enzymes on the brush border of the small intestine.[2] Though the α-1,6 bond breaks down slower compared to the α-1,4 bond, these IMO syrups, which often use a blend of di-and oligosaccharides, ultimately metabolize into small amounts of glucose and maltose[2] and thus should be viewed as a slow digesting carbohydrate rather than a true fiber.
In contrast insoluble fiber, which does not dissolve in water, is inert to digestive enzymes in your upper gastrointestinal tract. While some forms of insoluble fiber (like resistant starch) can ferment in your colon, most insoluble fiber moves through your digestive system relatively unchanged, absorbing water as it goes, eventually adding bulk to your stool and easing your bowel movements.
Lastly, one of the advertised benefits of IMO is possible prebiotic activity. Prebiotics are critical, as they feed the beneficial bacteria in our digestive system, specifically in the large intestine. These bacteria have several amazing functions, such as lowering body fat, improving insulin sensitivity, and lowering depression. Two “gold standard” prebiotics in the industry are inulin and fructooligosaccharides (FOS). Inulin and FOS are non-digestible carbohydrates that robustly increase beneficial bacteria. The challenge, however, is that both inulin and FOS, due to their rapid digestibility by intestinal bacteria, result in low gastric tolerance, and, ultimately, gastric distress. Additionally, inulin and FOS, when added to protein bars or other goods, may degrade over time into individual sugar units. Regardless, one study comparing inulin to IMOs, found that the prebiotic activity in inulin is 14 times greater than that of IMOs.[4] This is logical because, as you recall from above, approximately 70% to 90% of IMOs are digested. As such, only a small portion of these prebiotic fibers make it to the large intestine, in which two out of three studies have demonstrated that this small portion may indeed have some prebiotic effects.
The increased awareness regarding the importance of fiber, in addition to its distinct metabolic effects, has resulted in a surge of companies switching to an alternative fiber known as soluble corn fiber (SCF). Interestingly, SCF has been available on the US market since 2007 and is used in foods and beverages across the Americas, Europe, and Southeast Asia. SCF is produced through an extensive process: corn syrup is exposed to a suite of enzymes for at least 48 hours, some of which are found in the brush border of your small intestine, as well as the pancreas.[5] Notably, a large majority of the corn syrup contains easily digestible carbohydrates; however, a small portion is, in fact, not digestible. At the end of this enzymatic exposure, a stream of digestion-resistant carbohydrates remains and is subsequently filtered several times. The resulting product is a “true fiber” that contains a mixture of α-1,6, α-1,4, α-1,2, and α-1,3 glucosidic linkages, which, as mentioned above, contribute to its low digestibility.

Taken together, the above studies prompt the question: What is the prebiotic activity of SCF? If it is a true fiber, per our definitions above, then SCF should have a beneficial effect on gut microbiome bacteria. A study performed in 24 adolescents noted an increase in beneficial bacteria (e.g., Bacteroides, Butyricicoccus, Oscillibacter, and Dialister). Furthermore, this was correlated with an increase in calcium absorption upon the consumption of 12 grams of SCF per day for three weeks.[7][8] An additional study, which administered 8, 14, and 21 grams of SCF over 14 days, found that good bacteria (e.g., Bifidobacteria) increased and peaked at 8 grams per day. This value is nearly identical to inulin, which is considered the “gold standard.” Despite its nearly parallel effects to inulin at 8 grams/day, research has demonstrated that SCF is 3-4 times more tolerable than inulin due to its slower rate of digestibility by the gut bacteria. In fact, 26 grams of SCF barely increased GI symptoms relative to a placebo!


Depending on where you are going on vacation, you may have a measure of control over what you will be eating. For Keto dieters who are staying at a hotel and will be traveling from tourist spot to tourist spot, check with your hotel and see what kind of meal options their restaurant offers or whether there’s a continental breakfast. There may be fewer Keto-friendly options to choose from, but you will likely be able to find something to enjoy. Also, when out traveling, be sure to stop at grocery stores and purchase some Keto-friendly snacks that travel well, such as cured meats or cheeses, which can help keep you from overindulging.
*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease. Individual results may vary, and testimonials are not claimed to represent typical results. All testimonials are by real people, and may not reflect the typical purchaser’s experience, and are not intended to represent or guarantee that anyone will achieve the same or similar results.
One thing you can do for yourself, if you’re on vacation is pack your own food. This may not work if you’re flying overseas, but if you’re sticking to the USA; you should be able to pack your own food without a problem. Of course, sticking to the basics of the Keto diet is one of the smartest things you can do. Protein, high fat, and low carbs! Stick to foods you know are acceptable on the Keto diet.
Walk around any fitness expo, or even down the “snack bar” aisle of a grocery store, and you are bound to see many varieties of low carb, high protein bars, cookies, candies, and everything in between. Protein bars are in the mainstream right now, and they seem to be everywhere, from the local grocery store to the airport, and even gas stations. Companies have mastered the ability to create something that is pleasing to both the eye and the pallet (i.e., flavors like chocolate chip cookie dough, birthday cake, chocolate brownie, peanut butter, etc.), yet provides ample protein while “low” in carbohydrates. If you attend any fitness or food-related expo, you are very aware that the booths with the longest lines are the ones that are sampling their latest protein bars or “high protein, low carb” treats (cookies, brownies, ice creams, etc.). Nonetheless, in a red ocean market (i.e., market ran by competing industries) that is flooded with these “healthier and high-protein” alternatives, what truly separates one product from another?
Breath Hydrogen is an assay that indicates in “real-time” whether or not a particular nutrient is being digested. Upon consumption of a standard carbohydrate (e.g., rice), you can see that it is broken down in the small intestine, and, subsequently, blood glucose rises. If the carbohydrate is not digested in the small intestine, it moves into the large intestine. This indicates that it is a “true fiber.” In the large intestine, bacteria digest the fiber through a process called “fermentation.” In doing so, the bacteria produce hydrogen ions (H+) that circulate into the bloodstream, through our lungs, and is then exhaled outward. We monitored a subject consuming either IMOs or SCF respectively and then tracked the variables listed above for 150 minutes following consumption.
If you’ve been following a keto diet then you know that it takes a bit of time to get into ketosis. Ketosis is the state in which your body uses ketones, which are created during the breakdown of fats in the liver, as a fuel source to give you energy. If you eat carbs then your body will use glucose that comes from the carbs as the main source of fuel. 

7. Bouhnik, Y., Raskine, L., Simoneau, G., Vicaut, E., Neut, C., Flourié, B., … & Bornet, F. R. (2004). The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. The American journal of clinical nutrition, 80(6), 1658-1664.
7. Bouhnik, Y., Raskine, L., Simoneau, G., Vicaut, E., Neut, C., Flourié, B., … & Bornet, F. R. (2004). The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. The American journal of clinical nutrition, 80(6), 1658-1664.
×