IMOs can be made in several ways, but they are primarily derived from a sugar called maltose. IMO is promoted as a prebiotic fiber with a light sweetness profile. Its functional properties (i.e., moisture retention, low viscosity) make it well-suited for nutrition bars, cookies, candies, and the like. In order to fully understand IMOs and how the body processes them, we first need to understand how starches are digested in the body. Starches, also known as polysaccharides, are long and sometimes branched chains of glucose molecules. Initially, starch digestion begins in the small intestine with an enzyme called α-amylase. A-amylase breaks these long glucose chains into much shorter chains, called oligosaccharides, which are composed of anywhere from two to approximately 10 glucose units. Following this, specific enzymes on the brush border of the small intestine break down these oligosaccharides even further, into individual glucose units (monosaccharides) which are then absorbed.

Quick and Easy 10 minutes and 3 ingredients only Jellied Keto Cranberry Sauce Recipe made with Brown Sugar, you will make day after day. This Homemade, Gluten-Free, Low Carb and Grain Free Healthy Sugar-Free Cranberry Sauce Recipe goes perfectly not only on your Thanksgiving table but is a great addition to any meat stews, breakfast jam or filling for your Keto Crepes.

IMOs can be made in several ways, but they are primarily derived from a sugar called maltose. IMO is promoted as a prebiotic fiber with a light sweetness profile. Its functional properties (i.e., moisture retention, low viscosity) make it well-suited for nutrition bars, cookies, candies, and the like. In order to fully understand IMOs and how the body processes them, we first need to understand how starches are digested in the body. Starches, also known as polysaccharides, are long and sometimes branched chains of glucose molecules. Initially, starch digestion begins in the small intestine with an enzyme called α-amylase. A-amylase breaks these long glucose chains into much shorter chains, called oligosaccharides, which are composed of anywhere from two to approximately 10 glucose units. Following this, specific enzymes on the brush border of the small intestine break down these oligosaccharides even further, into individual glucose units (monosaccharides) which are then absorbed.


That was the best time ever. As I remember I used to pour it into a tiny small glasses – as all the adults did – and kept licking throughout the whole time. Never ever would I ever leave the glass dirty. I have always made sure I lick the whole glass from each side to get every little tiny drop of it. My mum was not really pleased with my way of cleaning the glasses, but I just could not help it. I had to. I had to get the last drop.
7. Bouhnik, Y., Raskine, L., Simoneau, G., Vicaut, E., Neut, C., Flourié, B., … & Bornet, F. R. (2004). The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. The American journal of clinical nutrition, 80(6), 1658-1664.
Louise holds a Bachelors and Masters in Natural Sciences from Cambridge University (UK). She attended Columbia University for her JD and practiced law at Debevoise & Plimpton before co-founding Louise's Foods, Paleo Living Magazine, Nourishing Brands, & CoBionic. Louise has considerable research experience but enjoys creating products and articles that help move people just a little bit closer toward a healthy life they love. You can find her on Facebook or LinkedIn.
A close relative of maltose is a molecule known as isomaltose (typically found in items such as beer and honey). The biggest difference between maltose and isomaltose is that isomaltose is joined together by an α-1,6 chemical bond, rather than an α-1,4 chemical bond. Scientists suspected that by adding a certain enzyme (transglucosidase) to high maltose syrup, they could change the bonds from α-1,4 to α-1,6, thereby making it more resistant to being broken down by the enzymes, as described above, when compared to maltose. Again, while this sounds excellent in theory, it is not necessarily what happens in our bodies. In fact, isomaltose (and thus, IMO syrups used in some of these products) is broken down by certain enzymes on the brush border of the small intestine.[2] Though the α-1,6 bond breaks down slower compared to the α-1,4 bond, these IMO syrups, which often use a blend of di-and oligosaccharides, ultimately metabolize into small amounts of glucose and maltose[2] and thus should be viewed as a slow digesting carbohydrate rather than a true fiber.

Low in carbs and high in fiber, lupini beans (aka lupin beans) are perfect for those on keto who are looking for a high-protein, high-fiber snack. Never heard of them? This yellow legume is hot on the heels of the edamame and fava bean as an on-trend nibble for the health-conscious consumer.  One cup of cooked lupini beans contains 4.6 grams of fiber—about 19% of the recommended daily value. However, ready-to-eat branded lupini bean snacks often contain even more. “I've noticed that the amount of carbs/fiber can vary greatly between lupini bean brands,” says Yule. “To make sure that you are choosing a food that is keto-friendly, be sure to check the label.”
This topic is very personal to me. I have family members who are severely overweight, some of whom are diabetic, and others who are dealing with a multitude of autoimmune diseases. The only thing that upsets me more than misleading supplement facts (an article for another day) is misleading information that is placed on nutritional labels, which can often leave the consumer unaware of the metabolic response that food actually has on the body.
First off, there’s the taste. Consumers want to have their cake and eat it too. At the end of the day, if the sweet indulgence tastes more like a bar of chalk, then there is a high probability that consumers will not be running out to buy it. In my opinion, most companies have nailed this aspect down to some degree. The majority of bars, cookies, or other low-carb snacks that I have tried actually taste really good. However, even if a product can meet the consumer standards with respect to taste and quality, the true separation occurs at the level of fiber source. The buzz words “high-fiber” and “low net carbs” are exploding in today’s society. Thus, companies are attempting to find ways in which they can add fiber to their products, thereby boosting their nutritional profile and simultaneously decreasing the number of net carbs. This now prompts the question: are all fiber sources nutritionally the same, and if not, what does this mean for the consumer?
Keto Diet practitioners who overeat a little on vacation shouldn’t chastise themselves too harshly. Life is about balance, and the Keto Diet helps practitioners regain control over their eating habits, but it shouldn’t be an overbearing burden. As long as you can get back to your diet plan after vacation, and you don’t use your holiday as an excuse to go back to your old way of eating, eating outside of what your Keto Diet plan recommends doesn’t have to be a huge problem.
The increased awareness regarding the importance of fiber, in addition to its distinct metabolic effects, has resulted in a surge of companies switching to an alternative fiber known as soluble corn fiber (SCF). Interestingly, SCF has been available on the US market since 2007 and is used in foods and beverages across the Americas, Europe, and Southeast Asia. SCF is produced through an extensive process: corn syrup is exposed to a suite of enzymes for at least 48 hours, some of which are found in the brush border of your small intestine, as well as the pancreas.[5] Notably, a large majority of the corn syrup contains easily digestible carbohydrates; however, a small portion is, in fact, not digestible. At the end of this enzymatic exposure, a stream of digestion-resistant carbohydrates remains and is subsequently filtered several times. The resulting product is a “true fiber” that contains a mixture of α-1,6, α-1,4, α-1,2, and α-1,3 glucosidic linkages, which, as mentioned above, contribute to its low digestibility.
I’m not sure who determined that egg nog is a recipe that only comes around during the holidays, but whoever they are shouldn’t be allowed to make anymore decisions. This is now one of my favorite beverages and seems like an awfully good way to end any night of the year. It’s thick, it’s rich, it’s creamy and low carb, does it get any better? Regardless of whether you are an eggnog drinker, you’ll want to make this keto eggnog for your friends and family this holiday season!  **Cooked Eggnog: If you prefer to cook your egg nog, you can first heat your heavy cream and flax milk in a saucepan, remove from heat and slowly whisk in the lightened color yolks and swerve mixture, and the peaked whites. Once fully combined return to heat and heat through once more prior to chilling. 
Skimping on fiber isn’t good for your digestive health, as it feeds the good bacteria in your GI tract, something that benefits you beyond adequate bowel movements. “The digestive tract is where your body’s second brain is, and it’s home to the majority of your immune system,” says Elia. “If you’re following keto, it should be one of your biggest priorities to make sure you get adequate fiber to keep your gut healthy and happy,” she adds. And, she notes, high-fat diets slow digestion and decrease GI motility, so it’s especially important to get enough.
Lastly, one of the advertised benefits of IMO is possible prebiotic activity. Prebiotics are critical, as they feed the beneficial bacteria in our digestive system, specifically in the large intestine. These bacteria have several amazing functions, such as lowering body fat, improving insulin sensitivity, and lowering depression. Two “gold standard” prebiotics in the industry are inulin and fructooligosaccharides (FOS). Inulin and FOS are non-digestible carbohydrates that robustly increase beneficial bacteria. The challenge, however, is that both inulin and FOS, due to their rapid digestibility by intestinal bacteria, result in low gastric tolerance, and, ultimately, gastric distress. Additionally, inulin and FOS, when added to protein bars or other goods, may degrade over time into individual sugar units. Regardless, one study comparing inulin to IMOs, found that the prebiotic activity in inulin is 14 times greater than that of IMOs.[4] This is logical because, as you recall from above, approximately 70% to 90% of IMOs are digested. As such, only a small portion of these prebiotic fibers make it to the large intestine, in which two out of three studies have demonstrated that this small portion may indeed have some prebiotic effects.
×