Psyllium husk is a type of fiber commonly used as a gentle, bulk-forming laxative. With no net carbs and a whopping 7 grams of fiber per two tablespoon serving, ground psyllium is an easy way to increase fiber intake on the keto diet. “It works great as a binding agent in recipes,” Yule says. “Just make sure to consume it with plenty of water, coconut water, or juice to avoid dehydration.” Add a tablespoon to your beverage, and you’re good to go.


The increased awareness regarding the importance of fiber, in addition to its distinct metabolic effects, has resulted in a surge of companies switching to an alternative fiber known as soluble corn fiber (SCF). Interestingly, SCF has been available on the US market since 2007 and is used in foods and beverages across the Americas, Europe, and Southeast Asia. SCF is produced through an extensive process: corn syrup is exposed to a suite of enzymes for at least 48 hours, some of which are found in the brush border of your small intestine, as well as the pancreas.[5] Notably, a large majority of the corn syrup contains easily digestible carbohydrates; however, a small portion is, in fact, not digestible. At the end of this enzymatic exposure, a stream of digestion-resistant carbohydrates remains and is subsequently filtered several times. The resulting product is a “true fiber” that contains a mixture of α-1,6, α-1,4, α-1,2, and α-1,3 glucosidic linkages, which, as mentioned above, contribute to its low digestibility.
IMOs can be made in several ways, but they are primarily derived from a sugar called maltose. IMO is promoted as a prebiotic fiber with a light sweetness profile. Its functional properties (i.e., moisture retention, low viscosity) make it well-suited for nutrition bars, cookies, candies, and the like. In order to fully understand IMOs and how the body processes them, we first need to understand how starches are digested in the body. Starches, also known as polysaccharides, are long and sometimes branched chains of glucose molecules. Initially, starch digestion begins in the small intestine with an enzyme called α-amylase. A-amylase breaks these long glucose chains into much shorter chains, called oligosaccharides, which are composed of anywhere from two to approximately 10 glucose units. Following this, specific enzymes on the brush border of the small intestine break down these oligosaccharides even further, into individual glucose units (monosaccharides) which are then absorbed.
×