7. Bouhnik, Y., Raskine, L., Simoneau, G., Vicaut, E., Neut, C., Flourié, B., … & Bornet, F. R. (2004). The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. The American journal of clinical nutrition, 80(6), 1658-1664.
In most cases, if you grab a low-carb snack at random from the grocery store shelf and look at the label, a common nutrient profile contains around 20 grams of carbohydrates, yet maybe 15 of those grams are from “fiber.” The result is five grams of net carbs, right? Not so fast. . . if a Type I diabetic were to consume that bar, cookie, or brownie with the five grams of net carbs, there should not be a need for insulin since, theoretically, there is minimal glucose (blood sugar) entering the system from those five net carbs, which shouldn’t require an insulin response. Unfortunately, theory and outcome do not always match.

There are two general categories of dietary fiber: soluble and insoluble. Fibrous foods typically contain both soluble and insoluble fibers. As a society, we understand the importance of fiber, including the benefits related to lowering body fat, decreasing the prevalence of diabetes, improving insulin sensitivity, decreasing the risk of heart disease and increasing satiety, as well as the beneficial bacteria in our digestive system.[1] Unfortunately, less than 5% of Americans actually meet the 30 gram per day recommended intake. To help increase fiber consumption, an increasing number of companies have developed a host of delicious, low-carb, high-fiber treats. Despite this, it is important to understand how our bodies process two of the most common “fibers” on the market that are used in these treats: isomaltooligosaccharides (IMOs) and soluble corn fiber (SCF).
But do you need that much fiber to stay healthy? Perhaps not. Several different large reviews of dozens of studies have found that eating more fiber than the average person can reduce your risk of dying from both heart disease and cancer by at least 10%[*][*][*]. The benefits of eating fiber in these studies occurred with a total daily fiber intake between 18-26 grams, much lower than the USDA and NAS recommendations.
I’ve been on the Keto zone diet for over 2 months and finally feel energy and a sense of fullness. I have logged purposely the meals you suggested in your book however when I test to see how I’m fairing in fat burning with the ketones sticks I come up in the middle. I tried to adjust here and there to see if my percentages are aligning to the 70-15-15 as you suggest but it still comes up in the middle. In other words I’m average in the fat burning process. Is this just stubbornness on my body’s part?I’m slowly loosing weight but slowly. I exercise but that hasn’t changed anything. Thanks for your help!

We’ve all seen it on food labels: “Only 2 net carbs” or “Low net carbs.” But what does this truly mean? What are net carbs, and why does it matter? Are all net carbs created equal, or are we stretching those claims a bit too much? After reading through this article, I think you will agree that there is a pressing need to educate on the precise definition of net carbs, and what exactly constitutes a true fiber.
IMOs can be made in several ways, but they are primarily derived from a sugar called maltose. IMO is promoted as a prebiotic fiber with a light sweetness profile. Its functional properties (i.e., moisture retention, low viscosity) make it well-suited for nutrition bars, cookies, candies, and the like. In order to fully understand IMOs and how the body processes them, we first need to understand how starches are digested in the body. Starches, also known as polysaccharides, are long and sometimes branched chains of glucose molecules. Initially, starch digestion begins in the small intestine with an enzyme called α-amylase. A-amylase breaks these long glucose chains into much shorter chains, called oligosaccharides, which are composed of anywhere from two to approximately 10 glucose units. Following this, specific enzymes on the brush border of the small intestine break down these oligosaccharides even further, into individual glucose units (monosaccharides) which are then absorbed.
×