Whisk 1 cup of the warmed nut milk into the yolk mixture. Then add back into the remaining nut milk in the saucepan. Stir until combined. Continue cooking over low heat until the mixture has thickened and reach about 165 degrees and will coat the back of a spoon. Don’t boil or overcook or else your eggs will curdle. If the eggs do curdle, you can strain the mixture to get rid of the curdled chunks.
We’ve all seen it on food labels: “Only 2 net carbs” or “Low net carbs.” But what does this truly mean? What are net carbs, and why does it matter? Are all net carbs created equal, or are we stretching those claims a bit too much? After reading through this article, I think you will agree that there is a pressing need to educate on the precise definition of net carbs, and what exactly constitutes a true fiber.
Whisk 1 cup of the warmed nut milk into the yolk mixture. Then add back into the remaining nut milk in the saucepan. Stir until combined. Continue cooking over low heat until the mixture has thickened and reach about 165 degrees and will coat the back of a spoon. Don’t boil or overcook or else your eggs will curdle. If the eggs do curdle, you can strain the mixture to get rid of the curdled chunks. 

IMOs can be made in several ways, but they are primarily derived from a sugar called maltose. IMO is promoted as a prebiotic fiber with a light sweetness profile. Its functional properties (i.e., moisture retention, low viscosity) make it well-suited for nutrition bars, cookies, candies, and the like. In order to fully understand IMOs and how the body processes them, we first need to understand how starches are digested in the body. Starches, also known as polysaccharides, are long and sometimes branched chains of glucose molecules. Initially, starch digestion begins in the small intestine with an enzyme called α-amylase. A-amylase breaks these long glucose chains into much shorter chains, called oligosaccharides, which are composed of anywhere from two to approximately 10 glucose units. Following this, specific enzymes on the brush border of the small intestine break down these oligosaccharides even further, into individual glucose units (monosaccharides) which are then absorbed.
Going on vacation is exciting, until you realize you just started the Keto diet. When you’re headed on vacation, believe it or not, but there are tons of ways you can stick to the Keto diet. Many people would agree when someone says that Keto is a way of life and not just a diet. Before you start on your vacation, you’ll need to keep this in mind. Don’t stress about eating keto when you are on vacation, it is fairly easy to keto on vacation! 
There are two general categories of dietary fiber: soluble and insoluble. Fibrous foods typically contain both soluble and insoluble fibers. As a society, we understand the importance of fiber, including the benefits related to lowering body fat, decreasing the prevalence of diabetes, improving insulin sensitivity, decreasing the risk of heart disease and increasing satiety, as well as the beneficial bacteria in our digestive system.[1] Unfortunately, less than 5% of Americans actually meet the 30 gram per day recommended intake. To help increase fiber consumption, an increasing number of companies have developed a host of delicious, low-carb, high-fiber treats. Despite this, it is important to understand how our bodies process two of the most common “fibers” on the market that are used in these treats: isomaltooligosaccharides (IMOs) and soluble corn fiber (SCF).
You may need to skip the cake, or at least limit your intake of sweets and carb-heavy vegetables. Know your body and do what makes you feel best. If you don’t think you will be able to get back on the Keto Diet comfortably after having a “cheat day” or “cheat vacation,” then perhaps it might be best to continue eating a strictly Keto-friendly diet.
Non-starchy vegetables are an essential part of the keto diet because they provide essential vitamins and minerals, are packed with antioxidants and provide plenty of fiber. Plus, when you load up on veggies, you are adding volume to your meals so that you feel more satisfied. You are also working to reduce inflammation, increase your antioxidant intake and support the health of your heart.
One of the first studies to examine IMO syrups[2] had six subjects consume 25 grams of IMO syrup. These researchers found that glucose levels increased from 109 mg/dL pre-ingestion to a peak of 136 mg/dL 30 min post-ingestion. Additionally, insulin rose to nearly parallel levels with that of glucose from 4.8 μU/mL pre-ingestion to nearly 32 μU/mL at 30 min post-ingestion. These values clearly indicate that some digestion is occurring. Furthermore, these researchers found that IMO was about 83% as digestible as maltose under resting conditions and about 69% as digestible after the exercise period. Taken together, this suggests that a large majority of the carbohydrate in the IMO syrup was, in fact, digested, absorbed, and metabolized.

In addition, no statement on this website has been evaluated by the Food and Drug Administration, and any product mentioned or described on this website is not intended to diagnose, treat, cure, or prevent any disease. If you purchase anything through a link on this website, you should assume that we have an affiliate relationship with the company providing the product or service that you purchase, and that we will be paid in some way. We recommend that you do your own independent research before purchasing anything.
Nutrition DataMacros are provided as a courtesy and should not be construed as a guarantee. This information is calculated using MyFitnessPal.com. To obtain the most accurate nutritional information in a given recipe, you should calculate the nutritional information with the actual ingredients used in your recipe, using your preferred nutrition calculator. You are solely responsible for ensuring that any nutritional information provided is accurate, complete, and useful.

The increased awareness regarding the importance of fiber, in addition to its distinct metabolic effects, has resulted in a surge of companies switching to an alternative fiber known as soluble corn fiber (SCF). Interestingly, SCF has been available on the US market since 2007 and is used in foods and beverages across the Americas, Europe, and Southeast Asia. SCF is produced through an extensive process: corn syrup is exposed to a suite of enzymes for at least 48 hours, some of which are found in the brush border of your small intestine, as well as the pancreas.[5] Notably, a large majority of the corn syrup contains easily digestible carbohydrates; however, a small portion is, in fact, not digestible. At the end of this enzymatic exposure, a stream of digestion-resistant carbohydrates remains and is subsequently filtered several times. The resulting product is a “true fiber” that contains a mixture of α-1,6, α-1,4, α-1,2, and α-1,3 glucosidic linkages, which, as mentioned above, contribute to its low digestibility.
Breath Hydrogen is an assay that indicates in “real-time” whether or not a particular nutrient is being digested. Upon consumption of a standard carbohydrate (e.g., rice), you can see that it is broken down in the small intestine, and, subsequently, blood glucose rises. If the carbohydrate is not digested in the small intestine, it moves into the large intestine. This indicates that it is a “true fiber.” In the large intestine, bacteria digest the fiber through a process called “fermentation.” In doing so, the bacteria produce hydrogen ions (H+) that circulate into the bloodstream, through our lungs, and is then exhaled outward. We monitored a subject consuming either IMOs or SCF respectively and then tracked the variables listed above for 150 minutes following consumption.
Lastly, one of the advertised benefits of IMO is possible prebiotic activity. Prebiotics are critical, as they feed the beneficial bacteria in our digestive system, specifically in the large intestine. These bacteria have several amazing functions, such as lowering body fat, improving insulin sensitivity, and lowering depression. Two “gold standard” prebiotics in the industry are inulin and fructooligosaccharides (FOS). Inulin and FOS are non-digestible carbohydrates that robustly increase beneficial bacteria. The challenge, however, is that both inulin and FOS, due to their rapid digestibility by intestinal bacteria, result in low gastric tolerance, and, ultimately, gastric distress. Additionally, inulin and FOS, when added to protein bars or other goods, may degrade over time into individual sugar units. Regardless, one study comparing inulin to IMOs, found that the prebiotic activity in inulin is 14 times greater than that of IMOs.[4] This is logical because, as you recall from above, approximately 70% to 90% of IMOs are digested. As such, only a small portion of these prebiotic fibers make it to the large intestine, in which two out of three studies have demonstrated that this small portion may indeed have some prebiotic effects.
IMOs can be made in several ways, but they are primarily derived from a sugar called maltose. IMO is promoted as a prebiotic fiber with a light sweetness profile. Its functional properties (i.e., moisture retention, low viscosity) make it well-suited for nutrition bars, cookies, candies, and the like. In order to fully understand IMOs and how the body processes them, we first need to understand how starches are digested in the body. Starches, also known as polysaccharides, are long and sometimes branched chains of glucose molecules. Initially, starch digestion begins in the small intestine with an enzyme called α-amylase. A-amylase breaks these long glucose chains into much shorter chains, called oligosaccharides, which are composed of anywhere from two to approximately 10 glucose units. Following this, specific enzymes on the brush border of the small intestine break down these oligosaccharides even further, into individual glucose units (monosaccharides) which are then absorbed.
×