As observed by the graphs above, in contrast to the IMOs in which blood glucose rapidly increased to 125 mg/dL, SCF did not elicit any blood glucose response.[9] In addition, while insulin was elevated during the IMO condition, it actually tended to go down in the SCF condition! Despite the results from the blood glucose and insulin responses, the breath hydrogen assay will distinguish which is a “true fiber.” Our data below clearly indicates that SCF indeed passes into the large intestine, as indicated by the large breath hydrogen response. In stark contrast, IMOs do not.
IMOs can be made in several ways, but they are primarily derived from a sugar called maltose. IMO is promoted as a prebiotic fiber with a light sweetness profile. Its functional properties (i.e., moisture retention, low viscosity) make it well-suited for nutrition bars, cookies, candies, and the like. In order to fully understand IMOs and how the body processes them, we first need to understand how starches are digested in the body. Starches, also known as polysaccharides, are long and sometimes branched chains of glucose molecules. Initially, starch digestion begins in the small intestine with an enzyme called α-amylase. A-amylase breaks these long glucose chains into much shorter chains, called oligosaccharides, which are composed of anywhere from two to approximately 10 glucose units. Following this, specific enzymes on the brush border of the small intestine break down these oligosaccharides even further, into individual glucose units (monosaccharides) which are then absorbed.
Dr. Ryan P. Lowery is the CEO of Ketogenic.com, author of The Ketogenic Bible, President of the Applied Science and Performance Institute and KetoPhD™. His mission  is to spread awareness around the Ketogenic Lifestyle and its’ many benefits beyond body composition. He earned his BS and MS in exercise physiology and exercise and nutrition science from the University of Tampa and completed his doctorate work at Concordia University in Health and Human Performance with a focus on “The Effects of a Well-Formulated Ketogenic Diet and Exogenous Ketone Supplementation on Various Markers of Health and Body Composition in Healthy and Diseased Populations.” Over his career, Ryan has published over 150 papers, abstracts, and book chapters on human performance and sports nutrition and has dedicated his life to educating the masses. In his free time, Ryan enjoys spending time with his best friend, Scoot the Keto Pup, jet skiing, and traveling around the world. The way to his heart is through a good glass of wine and Keto desserts.
It can be hard to eat at a restaurant and understanding what everything is made out of. One of the most basic things you can do is stick to the basics. Most people on the Keto diet don’t eat bread, pasta, or rice…easy enough. Of course, staying away from items that are heavy in sugar in carbs is also a good idea. Most people can look at a traditional dish and gauge whether something has a lot of carbs or not.

Louise holds a Bachelors and Masters in Natural Sciences from Cambridge University (UK). She attended Columbia University for her JD and practiced law at Debevoise & Plimpton before co-founding Louise's Foods, Paleo Living Magazine, Nourishing Brands, & CoBionic. Louise has considerable research experience but enjoys creating products and articles that help move people just a little bit closer toward a healthy life they love. You can find her on Facebook or LinkedIn.


Seeds are another high-fiber food that you can eat on keto, but only occasionally to stay in ketosis. Full seeds, ground seeds and seed butters will help to increase your fiber intake and minimize keto flu symptoms like constipation. Plus, they supply important nutrients, including essential fatty acids and protein, and are known to support cardiovascular health.
IMOs can be made in several ways, but they are primarily derived from a sugar called maltose. IMO is promoted as a prebiotic fiber with a light sweetness profile. Its functional properties (i.e., moisture retention, low viscosity) make it well-suited for nutrition bars, cookies, candies, and the like. In order to fully understand IMOs and how the body processes them, we first need to understand how starches are digested in the body. Starches, also known as polysaccharides, are long and sometimes branched chains of glucose molecules. Initially, starch digestion begins in the small intestine with an enzyme called α-amylase. A-amylase breaks these long glucose chains into much shorter chains, called oligosaccharides, which are composed of anywhere from two to approximately 10 glucose units. Following this, specific enzymes on the brush border of the small intestine break down these oligosaccharides even further, into individual glucose units (monosaccharides) which are then absorbed.

This recipe has been highly requested as of late, so we figured we should have our go at it so you can enjoy the holidays to their full extent this year! Our Keto Eggnog is not only easy to make, but replicates the eggnog you use to drink pre-keto to a tee. I’ll be honest, I’ve never had eggnog, but Matt used to drink it every year and couldn’t stop raving about how exact our keto version tastes. Matt isn’t quick to give a compliment so I think it’s safe to assume we have a winner with this recipe!
Lastly, one of the advertised benefits of IMO is possible prebiotic activity. Prebiotics are critical, as they feed the beneficial bacteria in our digestive system, specifically in the large intestine. These bacteria have several amazing functions, such as lowering body fat, improving insulin sensitivity, and lowering depression. Two “gold standard” prebiotics in the industry are inulin and fructooligosaccharides (FOS). Inulin and FOS are non-digestible carbohydrates that robustly increase beneficial bacteria. The challenge, however, is that both inulin and FOS, due to their rapid digestibility by intestinal bacteria, result in low gastric tolerance, and, ultimately, gastric distress. Additionally, inulin and FOS, when added to protein bars or other goods, may degrade over time into individual sugar units. Regardless, one study comparing inulin to IMOs, found that the prebiotic activity in inulin is 14 times greater than that of IMOs.[4] This is logical because, as you recall from above, approximately 70% to 90% of IMOs are digested. As such, only a small portion of these prebiotic fibers make it to the large intestine, in which two out of three studies have demonstrated that this small portion may indeed have some prebiotic effects.
×