In addition, no statement on this website has been evaluated by the Food and Drug Administration, and any product mentioned or described on this website is not intended to diagnose, treat, cure, or prevent any disease. If you purchase anything through a link on this website, you should assume that we have an affiliate relationship with the company providing the product or service that you purchase, and that we will be paid in some way. We recommend that you do your own independent research before purchasing anything.
7. Bouhnik, Y., Raskine, L., Simoneau, G., Vicaut, E., Neut, C., Flourié, B., … & Bornet, F. R. (2004). The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. The American journal of clinical nutrition, 80(6), 1658-1664.
Quick and Easy 10 minutes and 3 ingredients only Jellied Keto Cranberry Sauce Recipe made with Brown Sugar, you will make day after day. This Homemade, Gluten-Free, Low Carb and Grain Free Healthy Sugar-Free Cranberry Sauce Recipe goes perfectly not only on your Thanksgiving table but is a great addition to any meat stews, breakfast jam or filling for your Keto Crepes.
The Keto Diet works best if you can maintain it. If your body is continually switching from converting carbs to glucose, instead of converting fat to ketones for energy (which is the process of ketosis, wherein the liver converts fat cells into energy), your weight loss will possibly stall. Consequently, you may find that some health benefits of eating a Keto-friendly diet begin to diminish. Find a healthy balance on your next vacation; with some planning, you can maintain your Keto Diet even when you are out of your routine.
7. Bouhnik, Y., Raskine, L., Simoneau, G., Vicaut, E., Neut, C., Flourié, B., … & Bornet, F. R. (2004). The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. The American journal of clinical nutrition, 80(6), 1658-1664.
This topic is very personal to me. I have family members who are severely overweight, some of whom are diabetic, and others who are dealing with a multitude of autoimmune diseases. The only thing that upsets me more than misleading supplement facts (an article for another day) is misleading information that is placed on nutritional labels, which can often leave the consumer unaware of the metabolic response that food actually has on the body.

Eggnog is delicious all year round, but far from keto friendly. However, I found a simple way to mimic the milk that is normally found in eggnog, so that you can’t even tell the difference! If you use heavy whipping cream as the majority of the base and lighten it up with some flax, almond or cashew milk you’ll get the perfect thickness for your eggnog. Aside from the milk the rest is perfectly suited for a low carb diet, including the optional whiskey you add *wink face*.
Thus far, we have established what IMO is and how its structure can differ in regard to its carbon bonds. The real question is, “What are the metabolic responses of products that contain these IMOs?” The glycemic index of IMO is very low,[3] however, it has been shown to be nearly completely digested (83 % or more) by enzymes on the small intestinal border.[3] Thus, IMOs should not necessarily be classified as a true fiber but rather as a low glycemic carbohydrate like steel cut oatmeal, at about 3.3 calories per gram.
A close relative of maltose is a molecule known as isomaltose (typically found in items such as beer and honey). The biggest difference between maltose and isomaltose is that isomaltose is joined together by an α-1,6 chemical bond, rather than an α-1,4 chemical bond. Scientists suspected that by adding a certain enzyme (transglucosidase) to high maltose syrup, they could change the bonds from α-1,4 to α-1,6, thereby making it more resistant to being broken down by the enzymes, as described above, when compared to maltose. Again, while this sounds excellent in theory, it is not necessarily what happens in our bodies. In fact, isomaltose (and thus, IMO syrups used in some of these products) is broken down by certain enzymes on the brush border of the small intestine.[2] Though the α-1,6 bond breaks down slower compared to the α-1,4 bond, these IMO syrups, which often use a blend of di-and oligosaccharides, ultimately metabolize into small amounts of glucose and maltose[2] and thus should be viewed as a slow digesting carbohydrate rather than a true fiber.
Coconut is an excellent high-fat source of fiber. Did you know that coconut actually has 4-to-6 times the amount of fiber as oat bran? A cup of coconut contains about 7 grams of fiber, along with omega-6 fatty acids, manganese, folate and selenium. When it comes to keto fiber foods, you can eat coconut flakes, coconut chips, coconut flour and coconut oil, too.
Whisk 1 cup of the warmed nut milk into the yolk mixture. Then add back into the remaining nut milk in the saucepan. Stir until combined. Continue cooking over low heat until the mixture has thickened and reach about 165 degrees and will coat the back of a spoon. Don’t boil or overcook or else your eggs will curdle. If the eggs do curdle, you can strain the mixture to get rid of the curdled chunks.

IMOs can be made in several ways, but they are primarily derived from a sugar called maltose. IMO is promoted as a prebiotic fiber with a light sweetness profile. Its functional properties (i.e., moisture retention, low viscosity) make it well-suited for nutrition bars, cookies, candies, and the like. In order to fully understand IMOs and how the body processes them, we first need to understand how starches are digested in the body. Starches, also known as polysaccharides, are long and sometimes branched chains of glucose molecules. Initially, starch digestion begins in the small intestine with an enzyme called α-amylase. A-amylase breaks these long glucose chains into much shorter chains, called oligosaccharides, which are composed of anywhere from two to approximately 10 glucose units. Following this, specific enzymes on the brush border of the small intestine break down these oligosaccharides even further, into individual glucose units (monosaccharides) which are then absorbed.

×