*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease. Individual results may vary, and testimonials are not claimed to represent typical results. All testimonials are by real people, and may not reflect the typical purchaser’s experience, and are not intended to represent or guarantee that anyone will achieve the same or similar results.
Health.com is part of the Meredith Health Group. © Copyright 2020 Meredith Corporation. All rights reserved. The material in this site is intended to be of general informational use and is not intended to constitute medical advice, probable diagnosis, or recommended treatments. All products and services featured are selected by our editors. Health.com may receive compensation for some links to products and services on this website. Offers may be subject to change without notice. Privacy Policythis link opens in a new tab Terms of Servicethis link opens in a new tab Ad Choicesthis link opens in a new tab California Do Not Sellthis link opens a modal window Web Accessibilitythis link opens in a new tab
Walk around any fitness expo, or even down the “snack bar” aisle of a grocery store, and you are bound to see many varieties of low carb, high protein bars, cookies, candies, and everything in between. Protein bars are in the mainstream right now, and they seem to be everywhere, from the local grocery store to the airport, and even gas stations. Companies have mastered the ability to create something that is pleasing to both the eye and the pallet (i.e., flavors like chocolate chip cookie dough, birthday cake, chocolate brownie, peanut butter, etc.), yet provides ample protein while “low” in carbohydrates. If you attend any fitness or food-related expo, you are very aware that the booths with the longest lines are the ones that are sampling their latest protein bars or “high protein, low carb” treats (cookies, brownies, ice creams, etc.). Nonetheless, in a red ocean market (i.e., market ran by competing industries) that is flooded with these “healthier and high-protein” alternatives, what truly separates one product from another?
Lastly, one of the advertised benefits of IMO is possible prebiotic activity. Prebiotics are critical, as they feed the beneficial bacteria in our digestive system, specifically in the large intestine. These bacteria have several amazing functions, such as lowering body fat, improving insulin sensitivity, and lowering depression. Two “gold standard” prebiotics in the industry are inulin and fructooligosaccharides (FOS). Inulin and FOS are non-digestible carbohydrates that robustly increase beneficial bacteria. The challenge, however, is that both inulin and FOS, due to their rapid digestibility by intestinal bacteria, result in low gastric tolerance, and, ultimately, gastric distress. Additionally, inulin and FOS, when added to protein bars or other goods, may degrade over time into individual sugar units. Regardless, one study comparing inulin to IMOs, found that the prebiotic activity in inulin is 14 times greater than that of IMOs.[4] This is logical because, as you recall from above, approximately 70% to 90% of IMOs are digested. As such, only a small portion of these prebiotic fibers make it to the large intestine, in which two out of three studies have demonstrated that this small portion may indeed have some prebiotic effects.
One of the first studies to examine IMO syrups[2] had six subjects consume 25 grams of IMO syrup. These researchers found that glucose levels increased from 109 mg/dL pre-ingestion to a peak of 136 mg/dL 30 min post-ingestion. Additionally, insulin rose to nearly parallel levels with that of glucose from 4.8 μU/mL pre-ingestion to nearly 32 μU/mL at 30 min post-ingestion. These values clearly indicate that some digestion is occurring. Furthermore, these researchers found that IMO was about 83% as digestible as maltose under resting conditions and about 69% as digestible after the exercise period. Taken together, this suggests that a large majority of the carbohydrate in the IMO syrup was, in fact, digested, absorbed, and metabolized.
This recipe has been highly requested as of late, so we figured we should have our go at it so you can enjoy the holidays to their full extent this year! Our Keto Eggnog is not only easy to make, but replicates the eggnog you use to drink pre-keto to a tee. I’ll be honest, I’ve never had eggnog, but Matt used to drink it every year and couldn’t stop raving about how exact our keto version tastes. Matt isn’t quick to give a compliment so I think it’s safe to assume we have a winner with this recipe!
Most hotels these days include at least a small refrigerator, and some even include a full kitchen and stove. This is great because it allows you to shop locally for some fresh food options. Search online for nearby farmer’s markets or grocery stores and see if you can pick up some local meats or fresh veggies to have in your room. This is more likely to be an option in the warmer months.
NOTICE: The information contained or presented on this website is for educational purposes only. Information on this site is NOT intended to serve as a substitute for diagnosis, treatment, or advice from a qualified, licensed medical professional. The facts presented are offered as information only - not medical advice - and in no way should anyone infer that we or anyone appearing in any content on this website are practicing medicine. Any diet, health, or nutritional program you undertake should be discussed with your doctor or other licensed medical professional. Seek the advice of a medical professional for proper application of ANY material on this site to your specific situation.

IMOs can be made in several ways, but they are primarily derived from a sugar called maltose. IMO is promoted as a prebiotic fiber with a light sweetness profile. Its functional properties (i.e., moisture retention, low viscosity) make it well-suited for nutrition bars, cookies, candies, and the like. In order to fully understand IMOs and how the body processes them, we first need to understand how starches are digested in the body. Starches, also known as polysaccharides, are long and sometimes branched chains of glucose molecules. Initially, starch digestion begins in the small intestine with an enzyme called α-amylase. A-amylase breaks these long glucose chains into much shorter chains, called oligosaccharides, which are composed of anywhere from two to approximately 10 glucose units. Following this, specific enzymes on the brush border of the small intestine break down these oligosaccharides even further, into individual glucose units (monosaccharides) which are then absorbed.
×