Dr. Ryan P. Lowery is the CEO of Ketogenic.com, author of The Ketogenic Bible, President of the Applied Science and Performance Institute and KetoPhD™. His mission  is to spread awareness around the Ketogenic Lifestyle and its’ many benefits beyond body composition. He earned his BS and MS in exercise physiology and exercise and nutrition science from the University of Tampa and completed his doctorate work at Concordia University in Health and Human Performance with a focus on “The Effects of a Well-Formulated Ketogenic Diet and Exogenous Ketone Supplementation on Various Markers of Health and Body Composition in Healthy and Diseased Populations.” Over his career, Ryan has published over 150 papers, abstracts, and book chapters on human performance and sports nutrition and has dedicated his life to educating the masses. In his free time, Ryan enjoys spending time with his best friend, Scoot the Keto Pup, jet skiing, and traveling around the world. The way to his heart is through a good glass of wine and Keto desserts.
Even so, keto followers may experience a rise in LDL cholesterol, sometimes called “bad” cholesterol because too much of it can lead to a buildup of plaque in the arteries, which can increase the risk of heart disease. And that’s where fiber can help. However, many high-fiber foods, like beans, fruits, vegetables, nuts, seeds, and whole grains, are also high in carbs, so they're limited on the keto diet.
IMOs can be made in several ways, but they are primarily derived from a sugar called maltose. IMO is promoted as a prebiotic fiber with a light sweetness profile. Its functional properties (i.e., moisture retention, low viscosity) make it well-suited for nutrition bars, cookies, candies, and the like. In order to fully understand IMOs and how the body processes them, we first need to understand how starches are digested in the body. Starches, also known as polysaccharides, are long and sometimes branched chains of glucose molecules. Initially, starch digestion begins in the small intestine with an enzyme called α-amylase. A-amylase breaks these long glucose chains into much shorter chains, called oligosaccharides, which are composed of anywhere from two to approximately 10 glucose units. Following this, specific enzymes on the brush border of the small intestine break down these oligosaccharides even further, into individual glucose units (monosaccharides) which are then absorbed.