Thus far, we have established what IMO is and how its structure can differ in regard to its carbon bonds. The real question is, “What are the metabolic responses of products that contain these IMOs?” The glycemic index of IMO is very low,[3] however, it has been shown to be nearly completely digested (83 % or more) by enzymes on the small intestinal border.[3] Thus, IMOs should not necessarily be classified as a true fiber but rather as a low glycemic carbohydrate like steel cut oatmeal, at about 3.3 calories per gram.
I’m not sure who determined that egg nog is a recipe that only comes around during the holidays, but whoever they are shouldn’t be allowed to make anymore decisions. This is now one of my favorite beverages and seems like an awfully good way to end any night of the year. It’s thick, it’s rich, it’s creamy and low carb, does it get any better? Regardless of whether you are an eggnog drinker, you’ll want to make this keto eggnog for your friends and family this holiday season!  **Cooked Eggnog: If you prefer to cook your egg nog, you can first heat your heavy cream and flax milk in a saucepan, remove from heat and slowly whisk in the lightened color yolks and swerve mixture, and the peaked whites. Once fully combined return to heat and heat through once more prior to chilling. 
In addition, no statement on this website has been evaluated by the Food and Drug Administration, and any product mentioned or described on this website is not intended to diagnose, treat, cure, or prevent any disease. If you purchase anything through a link on this website, you should assume that we have an affiliate relationship with the company providing the product or service that you purchase, and that we will be paid in some way. We recommend that you do your own independent research before purchasing anything. 

There are two general categories of dietary fiber: soluble and insoluble. Fibrous foods typically contain both soluble and insoluble fibers. As a society, we understand the importance of fiber, including the benefits related to lowering body fat, decreasing the prevalence of diabetes, improving insulin sensitivity, decreasing the risk of heart disease and increasing satiety, as well as the beneficial bacteria in our digestive system.[1] Unfortunately, less than 5% of Americans actually meet the 30 gram per day recommended intake. To help increase fiber consumption, an increasing number of companies have developed a host of delicious, low-carb, high-fiber treats. Despite this, it is important to understand how our bodies process two of the most common “fibers” on the market that are used in these treats: isomaltooligosaccharides (IMOs) and soluble corn fiber (SCF).
Lastly, one of the advertised benefits of IMO is possible prebiotic activity. Prebiotics are critical, as they feed the beneficial bacteria in our digestive system, specifically in the large intestine. These bacteria have several amazing functions, such as lowering body fat, improving insulin sensitivity, and lowering depression. Two “gold standard” prebiotics in the industry are inulin and fructooligosaccharides (FOS). Inulin and FOS are non-digestible carbohydrates that robustly increase beneficial bacteria. The challenge, however, is that both inulin and FOS, due to their rapid digestibility by intestinal bacteria, result in low gastric tolerance, and, ultimately, gastric distress. Additionally, inulin and FOS, when added to protein bars or other goods, may degrade over time into individual sugar units. Regardless, one study comparing inulin to IMOs, found that the prebiotic activity in inulin is 14 times greater than that of IMOs.[4] This is logical because, as you recall from above, approximately 70% to 90% of IMOs are digested. As such, only a small portion of these prebiotic fibers make it to the large intestine, in which two out of three studies have demonstrated that this small portion may indeed have some prebiotic effects.

A close relative of maltose is a molecule known as isomaltose (typically found in items such as beer and honey). The biggest difference between maltose and isomaltose is that isomaltose is joined together by an α-1,6 chemical bond, rather than an α-1,4 chemical bond. Scientists suspected that by adding a certain enzyme (transglucosidase) to high maltose syrup, they could change the bonds from α-1,4 to α-1,6, thereby making it more resistant to being broken down by the enzymes, as described above, when compared to maltose. Again, while this sounds excellent in theory, it is not necessarily what happens in our bodies. In fact, isomaltose (and thus, IMO syrups used in some of these products) is broken down by certain enzymes on the brush border of the small intestine.[2] Though the α-1,6 bond breaks down slower compared to the α-1,4 bond, these IMO syrups, which often use a blend of di-and oligosaccharides, ultimately metabolize into small amounts of glucose and maltose[2] and thus should be viewed as a slow digesting carbohydrate rather than a true fiber.
The increased awareness regarding the importance of fiber, in addition to its distinct metabolic effects, has resulted in a surge of companies switching to an alternative fiber known as soluble corn fiber (SCF). Interestingly, SCF has been available on the US market since 2007 and is used in foods and beverages across the Americas, Europe, and Southeast Asia. SCF is produced through an extensive process: corn syrup is exposed to a suite of enzymes for at least 48 hours, some of which are found in the brush border of your small intestine, as well as the pancreas.[5] Notably, a large majority of the corn syrup contains easily digestible carbohydrates; however, a small portion is, in fact, not digestible. At the end of this enzymatic exposure, a stream of digestion-resistant carbohydrates remains and is subsequently filtered several times. The resulting product is a “true fiber” that contains a mixture of α-1,6, α-1,4, α-1,2, and α-1,3 glucosidic linkages, which, as mentioned above, contribute to its low digestibility.
*These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease. Individual results may vary, and testimonials are not claimed to represent typical results. All testimonials are by real people, and may not reflect the typical purchaser’s experience, and are not intended to represent or guarantee that anyone will achieve the same or similar results.
If you are aware of what you’re eating throughout the day, you can better plan for indulgences. When traveling to a place that is known for their cuisine, enjoy eating while remaining balanced about your diet. Instead of getting a sweet all to yourself, maybe share it with whoever you are going. By sampling small portions of food, instead of overeating till you feel sick, you can enjoy your vacation food while still keeping your Keto Diet in mind. Alternatively, be sure to get as much exercise as possible (walk to destinations instead of taking a bus or driving), and the extra exertion will help use up any extra calories (or carbs) that you may eat. 

The increased awareness regarding the importance of fiber, in addition to its distinct metabolic effects, has resulted in a surge of companies switching to an alternative fiber known as soluble corn fiber (SCF). Interestingly, SCF has been available on the US market since 2007 and is used in foods and beverages across the Americas, Europe, and Southeast Asia. SCF is produced through an extensive process: corn syrup is exposed to a suite of enzymes for at least 48 hours, some of which are found in the brush border of your small intestine, as well as the pancreas.[5] Notably, a large majority of the corn syrup contains easily digestible carbohydrates; however, a small portion is, in fact, not digestible. At the end of this enzymatic exposure, a stream of digestion-resistant carbohydrates remains and is subsequently filtered several times. The resulting product is a “true fiber” that contains a mixture of α-1,6, α-1,4, α-1,2, and α-1,3 glucosidic linkages, which, as mentioned above, contribute to its low digestibility.
×