Even so, keto followers may experience a rise in LDL cholesterol, sometimes called “bad” cholesterol because too much of it can lead to a buildup of plaque in the arteries, which can increase the risk of heart disease. And that’s where fiber can help. However, many high-fiber foods, like beans, fruits, vegetables, nuts, seeds, and whole grains, are also high in carbs, so they're limited on the keto diet.
Skimping on fiber isn’t good for your digestive health, as it feeds the good bacteria in your GI tract, something that benefits you beyond adequate bowel movements. “The digestive tract is where your body’s second brain is, and it’s home to the majority of your immune system,” says Elia. “If you’re following keto, it should be one of your biggest priorities to make sure you get adequate fiber to keep your gut healthy and happy,” she adds. And, she notes, high-fat diets slow digestion and decrease GI motility, so it’s especially important to get enough.
Even so, keto followers may experience a rise in LDL cholesterol, sometimes called “bad” cholesterol because too much of it can lead to a buildup of plaque in the arteries, which can increase the risk of heart disease. And that’s where fiber can help. However, many high-fiber foods, like beans, fruits, vegetables, nuts, seeds, and whole grains, are also high in carbs, so they're limited on the keto diet.
IMOs can be made in several ways, but they are primarily derived from a sugar called maltose. IMO is promoted as a prebiotic fiber with a light sweetness profile. Its functional properties (i.e., moisture retention, low viscosity) make it well-suited for nutrition bars, cookies, candies, and the like. In order to fully understand IMOs and how the body processes them, we first need to understand how starches are digested in the body. Starches, also known as polysaccharides, are long and sometimes branched chains of glucose molecules. Initially, starch digestion begins in the small intestine with an enzyme called α-amylase. A-amylase breaks these long glucose chains into much shorter chains, called oligosaccharides, which are composed of anywhere from two to approximately 10 glucose units. Following this, specific enzymes on the brush border of the small intestine break down these oligosaccharides even further, into individual glucose units (monosaccharides) which are then absorbed.
×