Nutrition DataMacros are provided as a courtesy and should not be construed as a guarantee. This information is calculated using MyFitnessPal.com. To obtain the most accurate nutritional information in a given recipe, you should calculate the nutritional information with the actual ingredients used in your recipe, using your preferred nutrition calculator. You are solely responsible for ensuring that any nutritional information provided is accurate, complete, and useful.
Breath Hydrogen is an assay that indicates in “real-time” whether or not a particular nutrient is being digested. Upon consumption of a standard carbohydrate (e.g., rice), you can see that it is broken down in the small intestine, and, subsequently, blood glucose rises. If the carbohydrate is not digested in the small intestine, it moves into the large intestine. This indicates that it is a “true fiber.” In the large intestine, bacteria digest the fiber through a process called “fermentation.” In doing so, the bacteria produce hydrogen ions (H+) that circulate into the bloodstream, through our lungs, and is then exhaled outward. We monitored a subject consuming either IMOs or SCF respectively and then tracked the variables listed above for 150 minutes following consumption.
Psyllium husk is a type of fiber commonly used as a gentle, bulk-forming laxative. With no net carbs and a whopping 7 grams of fiber per two tablespoon serving, ground psyllium is an easy way to increase fiber intake on the keto diet. “It works great as a binding agent in recipes,” Yule says. “Just make sure to consume it with plenty of water, coconut water, or juice to avoid dehydration.” Add a tablespoon to your beverage, and you’re good to go.

This topic is very personal to me. I have family members who are severely overweight, some of whom are diabetic, and others who are dealing with a multitude of autoimmune diseases. The only thing that upsets me more than misleading supplement facts (an article for another day) is misleading information that is placed on nutritional labels, which can often leave the consumer unaware of the metabolic response that food actually has on the body.

Important Disclaimer: The information contained on Bodyketosis is intended for informational and educational purposes only. Any statements made on this website have not been evaluated by the FDA and any information or products discussed are not intended to diagnose, cure, treat or prevent any disease or illness. Please consult a healthcare practitioner before making changes to your diet or taking supplements that may interfere with medications. 

Walk around any fitness expo, or even down the “snack bar” aisle of a grocery store, and you are bound to see many varieties of low carb, high protein bars, cookies, candies, and everything in between. Protein bars are in the mainstream right now, and they seem to be everywhere, from the local grocery store to the airport, and even gas stations. Companies have mastered the ability to create something that is pleasing to both the eye and the pallet (i.e., flavors like chocolate chip cookie dough, birthday cake, chocolate brownie, peanut butter, etc.), yet provides ample protein while “low” in carbohydrates. If you attend any fitness or food-related expo, you are very aware that the booths with the longest lines are the ones that are sampling their latest protein bars or “high protein, low carb” treats (cookies, brownies, ice creams, etc.). Nonetheless, in a red ocean market (i.e., market ran by competing industries) that is flooded with these “healthier and high-protein” alternatives, what truly separates one product from another?

One study compared the glycemic response of SCF to the glycemic response of glucose in 12 healthy adults during a randomized, controlled, crossover study.[6] The findings of this study revealed that SCF had a significantly lower incremental glucose and insulin response than that of the glucose control. Additionally, another study observed a significant lowering effect on postprandial (during or after food consumption) blood glucose and insulin (coinciding with an increase in fat oxidation) upon consumption of 55 grams of SCF in 18 overweight adults, compared to a full calorie control.


Dietary fiber refers to nutrients that are not digested by gastrointestinal enzymes. While true fibers are digested, they are not digested in the small intestine like normal carbohydrates, but rather are digested (fermented) by bacteria in the large intestine. True fibers should only be digested by the bacteria in the large intestine. Referring back to the previous example regarding the fitness expos, you can certainly “smell,” and often experience which high fiber bars have some “true” fiber based on the fermentation and digestion.

As observed by the graphs above, in contrast to the IMOs in which blood glucose rapidly increased to 125 mg/dL, SCF did not elicit any blood glucose response.[9] In addition, while insulin was elevated during the IMO condition, it actually tended to go down in the SCF condition! Despite the results from the blood glucose and insulin responses, the breath hydrogen assay will distinguish which is a “true fiber.” Our data below clearly indicates that SCF indeed passes into the large intestine, as indicated by the large breath hydrogen response. In stark contrast, IMOs do not.


If you can, try to stay at a hotel or hostel that has a kitchen which guests are allowed to use. You can also elect to find home-share style lodgings, as people often rent out their homes during peak vacation times for tourists to use. Once you have a kitchen, you have control over what you purchase and what you eat. An added benefit of this style of travel, other than the fact that you can stick to your Keto Diet effectively, is that you get to experience the local side of life. Going to grocery stores, choosing from local ingredients, and cooking for yourself will help make you feel like you’re a part of the culture, instead of only a visitor.


"If you know where you’re going far enough in advance, you can contact your resort or vacation destination and explain your dietary needs with an employee," they wrote. "The vast majority of destinations, including ours, are opening up their menus to try and make them more friendly to those with food allergies and special dietary needs. While keto/low carb aren’t always on those special menus, the fact that they have special menus at all shows that vacation spots recognize that there are a lot of different dietary needs and are willing to help people who can’t or won’t eat the standard fare."
7. Bouhnik, Y., Raskine, L., Simoneau, G., Vicaut, E., Neut, C., Flourié, B., … & Bornet, F. R. (2004). The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. The American journal of clinical nutrition, 80(6), 1658-1664.
One of the most common disaccharides (two monosaccharides joined together) is maltose. Maltose is generated when two glucose molecules are linked to one another by an α-1,4 chemical bond (1st carbon is bound to the 4th carbon, making it easily digestible). The type of bond involved in saccharide linkage is critical, as it determines its ability to become hydrolyzed by the enzymes we described above. As such, the α-1,4 chemical bond, as listed in the above example (maltose), has the ability to become hydrolyzed (broken down).
IMOs can be made in several ways, but they are primarily derived from a sugar called maltose. IMO is promoted as a prebiotic fiber with a light sweetness profile. Its functional properties (i.e., moisture retention, low viscosity) make it well-suited for nutrition bars, cookies, candies, and the like. In order to fully understand IMOs and how the body processes them, we first need to understand how starches are digested in the body. Starches, also known as polysaccharides, are long and sometimes branched chains of glucose molecules. Initially, starch digestion begins in the small intestine with an enzyme called α-amylase. A-amylase breaks these long glucose chains into much shorter chains, called oligosaccharides, which are composed of anywhere from two to approximately 10 glucose units. Following this, specific enzymes on the brush border of the small intestine break down these oligosaccharides even further, into individual glucose units (monosaccharides) which are then absorbed.
As observed by the graphs above, in contrast to the IMOs in which blood glucose rapidly increased to 125 mg/dL, SCF did not elicit any blood glucose response.[9] In addition, while insulin was elevated during the IMO condition, it actually tended to go down in the SCF condition! Despite the results from the blood glucose and insulin responses, the breath hydrogen assay will distinguish which is a “true fiber.” Our data below clearly indicates that SCF indeed passes into the large intestine, as indicated by the large breath hydrogen response. In stark contrast, IMOs do not.
The increased awareness regarding the importance of fiber, in addition to its distinct metabolic effects, has resulted in a surge of companies switching to an alternative fiber known as soluble corn fiber (SCF). Interestingly, SCF has been available on the US market since 2007 and is used in foods and beverages across the Americas, Europe, and Southeast Asia. SCF is produced through an extensive process: corn syrup is exposed to a suite of enzymes for at least 48 hours, some of which are found in the brush border of your small intestine, as well as the pancreas.[5] Notably, a large majority of the corn syrup contains easily digestible carbohydrates; however, a small portion is, in fact, not digestible. At the end of this enzymatic exposure, a stream of digestion-resistant carbohydrates remains and is subsequently filtered several times. The resulting product is a “true fiber” that contains a mixture of α-1,6, α-1,4, α-1,2, and α-1,3 glucosidic linkages, which, as mentioned above, contribute to its low digestibility.
×