One of the most common disaccharides (two monosaccharides joined together) is maltose. Maltose is generated when two glucose molecules are linked to one another by an α-1,4 chemical bond (1st carbon is bound to the 4th carbon, making it easily digestible). The type of bond involved in saccharide linkage is critical, as it determines its ability to become hydrolyzed by the enzymes we described above. As such, the α-1,4 chemical bond, as listed in the above example (maltose), has the ability to become hydrolyzed (broken down).
The increased awareness regarding the importance of fiber, in addition to its distinct metabolic effects, has resulted in a surge of companies switching to an alternative fiber known as soluble corn fiber (SCF). Interestingly, SCF has been available on the US market since 2007 and is used in foods and beverages across the Americas, Europe, and Southeast Asia. SCF is produced through an extensive process: corn syrup is exposed to a suite of enzymes for at least 48 hours, some of which are found in the brush border of your small intestine, as well as the pancreas.[5] Notably, a large majority of the corn syrup contains easily digestible carbohydrates; however, a small portion is, in fact, not digestible. At the end of this enzymatic exposure, a stream of digestion-resistant carbohydrates remains and is subsequently filtered several times. The resulting product is a “true fiber” that contains a mixture of α-1,6, α-1,4, α-1,2, and α-1,3 glucosidic linkages, which, as mentioned above, contribute to its low digestibility.
Breath Hydrogen is an assay that indicates in “real-time” whether or not a particular nutrient is being digested. Upon consumption of a standard carbohydrate (e.g., rice), you can see that it is broken down in the small intestine, and, subsequently, blood glucose rises. If the carbohydrate is not digested in the small intestine, it moves into the large intestine. This indicates that it is a “true fiber.” In the large intestine, bacteria digest the fiber through a process called “fermentation.” In doing so, the bacteria produce hydrogen ions (H+) that circulate into the bloodstream, through our lungs, and is then exhaled outward. We monitored a subject consuming either IMOs or SCF respectively and then tracked the variables listed above for 150 minutes following consumption.
In contrast insoluble fiber, which does not dissolve in water, is inert to digestive enzymes in your upper gastrointestinal tract. While some forms of insoluble fiber (like resistant starch) can ferment in your colon, most insoluble fiber moves through your digestive system relatively unchanged, absorbing water as it goes, eventually adding bulk to your stool and easing your bowel movements.
One of the first studies to examine IMO syrups[2] had six subjects consume 25 grams of IMO syrup. These researchers found that glucose levels increased from 109 mg/dL pre-ingestion to a peak of 136 mg/dL 30 min post-ingestion. Additionally, insulin rose to nearly parallel levels with that of glucose from 4.8 μU/mL pre-ingestion to nearly 32 μU/mL at 30 min post-ingestion. These values clearly indicate that some digestion is occurring. Furthermore, these researchers found that IMO was about 83% as digestible as maltose under resting conditions and about 69% as digestible after the exercise period. Taken together, this suggests that a large majority of the carbohydrate in the IMO syrup was, in fact, digested, absorbed, and metabolized.
Nutrition DataMacros are provided as a courtesy and should not be construed as a guarantee. This information is calculated using MyFitnessPal.com. To obtain the most accurate nutritional information in a given recipe, you should calculate the nutritional information with the actual ingredients used in your recipe, using your preferred nutrition calculator. You are solely responsible for ensuring that any nutritional information provided is accurate, complete, and useful.
First off, there’s the taste. Consumers want to have their cake and eat it too. At the end of the day, if the sweet indulgence tastes more like a bar of chalk, then there is a high probability that consumers will not be running out to buy it. In my opinion, most companies have nailed this aspect down to some degree. The majority of bars, cookies, or other low-carb snacks that I have tried actually taste really good. However, even if a product can meet the consumer standards with respect to taste and quality, the true separation occurs at the level of fiber source. The buzz words “high-fiber” and “low net carbs” are exploding in today’s society. Thus, companies are attempting to find ways in which they can add fiber to their products, thereby boosting their nutritional profile and simultaneously decreasing the number of net carbs. This now prompts the question: are all fiber sources nutritionally the same, and if not, what does this mean for the consumer?

Skimping on fiber isn’t good for your digestive health, as it feeds the good bacteria in your GI tract, something that benefits you beyond adequate bowel movements. “The digestive tract is where your body’s second brain is, and it’s home to the majority of your immune system,” says Elia. “If you’re following keto, it should be one of your biggest priorities to make sure you get adequate fiber to keep your gut healthy and happy,” she adds. And, she notes, high-fat diets slow digestion and decrease GI motility, so it’s especially important to get enough.
×